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Abstract: Contaminated groundwater has been a serious problem across the world for many years as it has a bad impact on the 

quality of groundwater as well as on the environment. This study considers the solute transport problem in a heterogeneous porous 

medium with scale and time-dependent dispersion. The heterogeneity of porous media at the microscopic level facilitates 

dispersion, which affects groundwater flow patterns and solute distribution. For this work, the porous formation is assumed to be 

of semi-infinite length and of adsorbing nature. The key parameters such as dispersion coefficient and groundwater velocity are 

considered to be spatially and temporally dependent functions in degenerated forms. In addition, the first-order decay and zero-

order production terms are also considered as time-dependent functions. Initially, it is assumed that the aquifer is uniformly 

polluted. Two different types of input sources namely uniform and varying nature are considered along the flow at one end in two 

separate cases, while concentration gradient, at non-source end boundary, is supposed to be zero. An analytical solution of the 

current boundary value problem is obtained using the Laplace Integral Transform Technique (LITT). The results obtained from 

the proposed problem are demonstrated graphically for a particular time functions in dispersion and groundwater velocity. 
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1. Introduction 

Groundwater is one of the major resources of fresh water 

worldwide. It is especially important in arid and semi-arid 

regions where rainfall and surface water is scarce. 

Groundwater contamination can have a negative impact on the 

environment, the quality of the land, and human health. 

Rectification of these contaminated water reserves has been a 

major challenge for researchers around the world. 

Contaminants, entering groundwater at some site by natural or 

man-made means, increase the level of whole groundwater 

domain contamination due to the flow dynamics of the aquifer. 

Once groundwater gets contaminated, its complex composition 

makes it very difficult to assess and propose remedial 

measures to eliminate it. Typically, groundwater flow and 

solute transport in unsaturated aquifers are caused by transient 

phenomena, making it a difficult problem. An efficacious 

mathematical model is needed to describe, predict and control 

the solute transport phenomena in an aquifer system. 

The advection-dispersion equation (ADE) is one of the 

most appropriate and popular equation to describe the solute 

transport problem in an aquifer system. This equation (ADE) 

may derive using conservation of mass and Fick's law of 

diffusion. The velocity and direction of solute transport 

depends on an understanding of groundwater velocity that 

determines convective velocity and its value. In a 

heterogeneous porous medium, solutes move along different 

trajectories, which is variation in velocity and dispersion. 

There are many analytical/numerical solutions of the 

advection-dispersion equation in the literature, but none are 
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universally applicable to all cases, although their importance 

is undeniable. Solutions of the advection-dispersion equation 

with constant dispersion do not provide a satisfactory 

description of the transport of solutes in soil and groundwater 

[1, 2]. Lynn W Gelhar et al concluded that dispersion is time-

dependent and continues to increase until an asymptomatic 

value is reached [3]. Raja Ram Yadav et al developed an 

analytical solution describing the concentration distribution 

in a one-dimensional saturated aquifer system [4]. A number 

of studies (theoretical and experimental) show the transport 

of pollutants in most natural porous media is affected by 

spatial variability in physical and chemical properties [5, 6]. 

Theoretically, Oktay Guven et al also found that the 

dispersion in layered porous media is time-dependent [7]. 

Andrew D Barry and Garrison Sposito developed an 

analytical solution for the advection-dispersion equation with 

a temporally dependent dispersion coefficient in a semi-

infinite porous domain [8]. William J Golz et al developed 

analytical solutions to the convection-diffusion equations to 

account for chemical transport affected by adsorption, decay, 

and first order production [9]. Stochastic and deterministic 

are generally two techniques to describe solute transport with 

depth-dependent reactions in porous media [10]. 

Analytical solutions to the one-dimensional advection-

dispersion equation in porous media affected by space- and 

time-dependent dispersion and velocity are obtained by [11, 12, 

13]. Creating mathematical models to analyze the movement 

of pollutants while taking into account chemical processes and 

hydraulic conductivity is a challenging task [14]. Literature 

review suggests that there are many analytical/numerical 

solutions for different situations, but none can represent all 

situations [13, 15, 6, 16]. To explain solute transport processes 

in natural or artificial aquifer systems, time-dependent input 

source solutions are very useful [17]. An analytical solution to 

the convective-diffuse solute transport problem with time-

dependent boundary conditions is presented by [18]. Mritunjay 

Kumar Singh et al, also developed scale-dependent dispersion 

in heterogeneous porous media [19]. Anis Younes et al 

investigated the effect of travel distance on the dispersivity 

value in porous media and observed that the difference in 

travel distance was mainly controlled by transverse diffusion 

[20]. In general, porous structures are heterogeneous in nature, 

exhibiting significant changes in hydraulic properties that 

affect flow and transport phenomena [21]. 

The purpose of this study is to propose an analytical 

solution for conservative solute transport in time- and space-

dependent flow in heterogeneously adsorbing porous media. 

The focus of this study is to obtain analytical solutions using 

different forms of dispersion and groundwater velocity at 

different time intervals. It is assumed that both of these key 

parameters (dispersion and velocity) are space and time-

dependent. The spatial dependence occurs due to the 

heterogeneity of the medium, while the temporal dependence 

occurs due to the unsteadiness of the flow field. The transport 

process in the aquifer is mainly influenced by boundary 

conditions as well as other physical processes. Finally, 

solutions are developed for two different input sources such 

as uniform and varying nature. Moreover, the solute transport 

process also involves first-order decay and zero-order 

production terms. Here, we describe one-dimensional 

analytical solutions of the advection–dispersion equation 

involving the injection of a solute in a semi-infinite 

horizontally long porous formation that is initially, uniformly 

distributed with solute. 

2. Mathematical Formulation and 

Analytical Solutions 

This study mainly focused on describing the time- and 

space-dependent transport of pollutants in a semi-infinite 

heterogeneous porous structure. On the basis of some 

physical mechanisms/concepts like conservation of mass and 

Fick’s law in solute transport problems mathematically, the 

advection-dispersion equation (ADE), which is a second-

order partial differential equation, is applicable. For the 

proposed problem, flow is considered along longitudinal 

direction. In the Cartesian coordinate system, the left 

boundary of the medium is fixed at the origin, and the flow 

direction is supposed to be from left to right. The governing 

one-dimensional advection-dispersion equation (ADE) may 

be written as [22]: 

( )
( )

( ) ( )
,

, ,

,

c
D x tc

xR x t c x t
t x

U x t c

µ γ
∂ 

∂ ∂  ∂= − + ∂ ∂  − 

       (1) 

Where, [ ]3−
MLc  is the contaminant concentration at 

position [ ]Lx  and time [ ]Tt . [ ]12
),(

−
TLtxD , [ ]1

),(
−

LTtxU , 

( ) [ ]1
,

−
Ttxµ  and ( )[ ]13

,
−−

TMLtxγ  are dispersion coefficient, 

groundwater velocity, first order decay and zero order 

production parameters along longitudinal direction, 

respectively. Groundwater pollution, or the concentration of 

pollutants, in an aquifer system, is assumed to be varying 

over time. In (1), the effect of molecular diffusion is 

excluded from the solute transport process as the mechanical 

dispersion dominates the hydrodynamic dispersion process. 

The adsorption gives rise to the significant phenomena of 

delay in the movement of the solute transport, which is 

included in (1) as retardation factor R  is a dimensionless 

quantity. As in real life scenarios, dispersion varies in 

different ways at different time and one cannot expect the 

same pattern to follow over time. With this view, the 

dispersion and velocity parameters are taken differently for 

different time slots. The space- and time-dependent 

expressions for the dispersion coefficient and groundwater 

velocity are assumed to be in the degenerate form as follows: 

( ) ( ), 1 ( )0U x t U ax F t= + ; ( ) ( )2, 1 ( );0D x t D ax F t= +

( ) ; ( )0 0F t F tµ µ γ γ= =                      (2) 
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where, 

( )
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( )
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It is to be noticed that the time function ( )tF is taken 

differently in different time domains. The expression 

( ) nnitimif ,1,......,2,1; −=
 
is dimensionless and im  is an 

unsteady parameter having dimension inverse that of time. 

Here, for ( )tmf 11
 is chosen in such a way that ( ) 111 =tmf  

for 01 =m  or 0=t . 

It is clear that the function )(tF  is dimensionless. 
0D , 

0U , 

0µ
 
and 

0γ  are the initial values of corresponding parameters 

at 0=x  and 0=t , and having the dimensions of 

corresponding parameters. Furthermore, a  is a heterogeneity 

parameter whose dimension is inverse of that of position [13]. 

Incorporating, (2) into (1), we get as follows: 

( ) ( ){ }2
1 ( ) 1 ( ) ( ) ( )

0 0 0 0

c c
R D ax F t U ax F t c F t c F t

t x x x
µ γ∂ ∂ ∂ ∂ = + − + − + ∂ ∂ ∂ ∂ 

                                   (3) 

The solute transport is affected by the chosen boundary 

conditions. Analytical solutions are developed for uniform 

and varying nature inputs in the following two cases, 

respectively. 

For the both cases, initial concentration is present in the 

background of the domain. Initially, the aquifer domain is 

assumed to be uniformly polluted, and the concentration 

gradient is zero at the other end of the boundary. 

2.1. Case I: Uniform Input Point Source Condition 

The introduction of solutes into a medium over time is 

mathematically represented by Dirichlet boundary 

conditions. 

2.1.1. Initial and Boundary Conditions 

It is assumed that some uniformly distributed 

concentration already exists at all points in the domain at the 

beginning of the investigation, i.e., at t = 0. The second type 

boundary condition with zero concentration gradient is 

imposed at the right end of the domain. At the one end, 

concentration introduced to the medium notices sudden jump 

for very short period of time, otherwise, it remains constant.
 

To obtain the solution of (3), one initial condition and two 

boundary conditions are required, which can be expressed 

mathematically as follows: 

( ), ;0 , 0c x t c x ti= ≤ < ∞ =  (4) 

( )
( ){ } 0,0;

*

*

0),( >=
+−−

−
+=












tx

ttu

ttu
ctxc

ε
ψ       (5) 

( ),
0;

c x t

x

∂
=

∂
,x →∞ 0t ≥                     (6) 

where, 0c and ic denote the reference and initial 

concentration, respectively and ( )tu is the unit step function 

of time variable and is considered dimensionless. Second 

term in right hand side of (5) represents input source like the 

waste material like toxic chemicals of amount [ ]3−
MLψ

released suddenly at a time *
t and it lasts for very small time 

duration ε by the industry or the chemical compound 

seepage by the soil to the groundwater which used for the 

agriculture, and also during a volcanic eruption, lava, tephra 

(i.e., ash, lapilli). So, ψ may be termed as regulating 

coefficient. Groundwater contamination may occur due to 

sudden leakage (natural or unnatural activity) in an area 

relatively close to the inlet boundary. 

2.1.2. Analytical Solution of the Problem 

Now, a new time variable T  is introduced with a 

transformation as follows [23]: 

( ) ( ) ( ) ( )
31 2

( ) ...........
1 1 2 2 3 3

0 0 1 2 1

tt tt t
T F t dt f m t dt f m t dt f m t dt f m t dtn n

t t t
n

= = + + + +∫ ∫ ∫ ∫ ∫
−

                        (7) 

Clearly, for 0=t , it takes 0=T  and for 0>t , T  is also greater than zero. i.e., 0>T . Incorporating the transformation 

given with (7) in (3-6), all equations reduce to new form as follows: 

( ) ( ){ }2
1 10 0 0 0

c c
R D ax U ax c c

T x x x
µ γ∂ ∂ ∂ ∂ = + − + − + ∂ ∂ ∂ ∂ 

                                        (8) 

( ), ;0 , 0c x T c x Ti= ≤ < ∞ =                                                                    (9) 
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 


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
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c x T

x

∂
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∂
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It is obvious that ( )*
ttu −  and ( ){ }ε+− *

ttu  may be replaced by ( )*
TTu −  and ( )*

εTTu −  respectively, because for 0=t , 

we have 0=T  and corresponding 0>t , we have 0>T , also for 
*

t  and ε+*
t , the corresponding time in new variables 

given in transformation in (7) are 
*

T  and 
*

εT given as follows: 

*
* ( )

0

t
T F t dt= ∫  and 

*
* ( )

0

t
T F t dt

ε
ε

+
= ∫  

To remove the spatial coefficients from (8), we further introduce another new transformation as follows [13]: 

( )
1

10

x
X dx

ax
= ∫ + or ( )1

log 1X ax
a

= +                                                                (12) 

Obviously, the value of X  is 0 for 0=x and 0>X for 0>x , using the transformation given in (12), (8-11) convert into 

following form: 

( ) ( )
2

0 0 0 0 0 02

c c c
R D U D a U a c

T XX
µ γ∂ ∂ ∂= − − − + +

∂ ∂∂
 

or 

2

0 1 1 02

c c c
R D U c

T XX
µ γ∂ ∂ ∂= − − +

∂ ∂∂
                                                                 (13) 

where, 

1 0 0U U D a= − , 1 0 0U aµ µ= + , ( ), ;0 , 0c X T c X Ti= ≤ < ∞ =                                          (14) 
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To remove the convective term from (13), we further introduce a new transformation as follows: 
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1

0

1
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2
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1

exp,,
µ

γ

µ

+

+

−

=


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
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Where, ( )TXk ,  is the new dependent variable, depending on the position and time. Using transformation (17), (13-16) 

reduces into following form: 
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where, 
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Applying Laplace Integral Transformation Technique to (18-21), we have 

( ) ( ) ( ) { }

{ } ( )
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( )

1 2 *0, exp exp ( )
0 2 2

1 0

exp12 * 0 0exp ( ) exp exp
2 2
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        (22) 

where, 

20D

R
ρ β=  

Now taking Inverse Laplace Integral Transform of (22) and using transformation in (17) backward, the analytical solution of 

advection dispersion equation may be written as [24]: 

( ) ( ) ( )
( )

0

0 0, , , 10 1 1
1 1 2exp

2
1 *01 1exp ,0

12 4
0 0 1
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µ
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 −        = − − − +           − + 

  
  × − + + < ≤     

                                (23) 
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                    (25) 

where, 
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1 2 2 2

0 0 0 0

R R R R
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D D T D D T
η η η η η ηη
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and ),(1 TXG ρ  is obtained by replacing η  with ρ  in ),(1 TXG η , while ( )*
,1 TTXG −η  and ( )*

,
1 εη TTXG −  are obtained 

by replacing T  with 
*

TT −  and 
*

εTT − , in ( )TXG ,
1η , respectively. 

2.2. Case II: Varying Input Point Source Condition 

This input is represented with robin type boundary conditions which is mixed type of Dirichlet’s boundary condition. 

2.2.1. Initial and Boundary Conditions 

Initial concentration distribution and boundary condition at infinity is same as taken in previous case expressed by (4) and 

(6), respectively. The input at x = 0 is assumed to be different from the previous case, which is mathematically expressed as: 

( ) ( ) ( ) ( ) ( ) ( ){ }
0,

, , , ; 0, 0* *

c
c x t

D x t U x t c U x t x t
x u t t u t tψ ε

+ 
∂  − + = × = >  ∂ − − − +    

                                 (26) 

2.2.2. Analytical Solution of the Problem 

Using transformation given in (7) and incorporating (2), (26) reduces into following form: 

( ) ( ) ( )
( ){ }

*
,

1 ; 0, 0
0 0 0 0 *

u T T
c x T

D ax U c U c x T
x u T T

ψ
ε

  − ∂  
− + + = + = >  ∂   − − +

   

                                (27) 

Using the transformation given in (12), (27) is converted into the following form: 

( ) ( ) ( ), * * ; 0, 0
0 0 0 0

c X T
D U c U c u T T u T T X T

X
ψ ε

∂   − + = + − − − = >   ∂  
                                         (28) 

Using the transform given in (17) on (28), then the Laplace Integral Transform Technique on obtained equation along with 

(18, 19, 21) as performed in previous case, we have the following result: 
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η η ε

γ
µ ρ σ

 
 = − + ×
 − + − + 

  
  −

         − − 
   − +    − − − − − − 

    

 
 − − −
  − + 

( )

( )
ex p0

2
0 1

XR
X ciD p

γ β
µ ρ

    −
   + −

   −  

             (29) 

Where, 20D

R
ρ β= , 

2 0 1

2 0

U U

RD
σ

−
=  

Now taking Inverse Laplace Integral Transform to (29) and using transformation (17) backward, the analytical solution of 

advection dispersion equation may be written as follows: 

( ) ( ) ( )

( )

0 0 0 0 0 0, , , ( , )
2 2 2

0 0 10 1

2
12 *0 01 1exp exp ,0

12 4
1 0 0 1

U c U U
c X T G X T G X T c G X TiRD RD RD

U U
c X T X T T Ti D R D

γ γ
ησ ησ ρηµµ

γ γ
β ρ µ

µ µ

 
 = − − − +    

        − − + × − + + < ≤           

                       (30) 

( ) ( ) ( ) ( )

( ) ( ) ( )

* 2 *0 0 0 0 0, , , exp
2 2

0 0 0 1

20 0 0, , exp
2 2

0 1 1

2
1 * *01 1exp ,

12 4
0 0 1

U c U U
c X T G X T G X T T T

RD RD RD

U
G X T c G X T c X Ti iRD

U U
X T T T T

D R D

ψ γ
ηησ ησ µ

γ γ
β ρησ ρσµ µ

γ
µ εµ

= + − −


    
   − − + − − + ×        

  
  − + + < ≤
  
   

                               (31) 

( )

( ) ( )
( ) ( )

( )

( ) ( )

0 0 0( , ) ,
2

0 0

* 2 *, exp
2 0 0 0,

2* 2 * 0, exp 1 02

2
120 0 01 1, exp exp

2 12 4
1 1 0 0

U c U
c X T G X T

RD RD

G X T T T U U
G X T

RD RDG X T T T

U U
c G X T c X T X Ti i D R D

ψ
ησ

η γησ
ησµηε εησ

γ γ γ
β ρ µρσµ µ

= +


 − −
  − − 

− 
 

            − + − − + × − + +               

*,

1

T Tεµ
<

             (32) 

where, 

1 12( , ) exp
2 2( ) 2( )20 0

2 2exp exp { }
2 22 20 00 0

R R
G X T T X erfc X T

D D T

R R R R
T X erfc X T T X erfc X T

D DD T D T

η η ηησ η σ η σ

ηη η η σ σ σ
η σ

  
  = − − − ×
  + −

   

    
    + + + + × +
    −    

 

and ),(
2

TXG ρσ  is obtained by replacing η  with ρ in 
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( )TXG ,
2ησ  while ( )*

,2 TTXG −ησ  and

( )*
,

2 εησ TTXG −  are obtained by replacing T  with 

*
TT −  and

*
εTT − , respectively in ( )TXG ,

2ησ  

respectively. 

3. Results and Discussion 

Analytical solutions (23, 24, 25) and (30, 31, 32) to the 

governing equation are demonstrated graphically in this 

section which is based on published and experimental 

hydrological input data. The values of the parameters and 

empirical constants involved in the boundary conditions, as 

well as the governing equation, are determined from 

published papers like [12]. The parameters affecting the 

concentration distribution are demonstrated with help of 

various graphs. The contaminant concentration values are 

evaluated for the longitudinal porous domain

4)(0 ≤≤ kmx . The values of common input parameters 

and constants are considered as follows:
 

0.10 =c , 1.0=ic , 65.0)/yearkm(0 =U ,

11.0)
1

(0 =−
yearµ , ,11.00 =γ 05.0)( =yearε ,

1.0)km( 1 =−a , 5.0)( =yearψ , 80.0)(
* =yeart . 

The mathematical expression for the time-dependent 

function that varies in each time domain is as follows: 

( )
{ } ( )

( )
( ) ( )

exp( ); 0 11

( ) exp ( 1) ; 1 51 2 2

53 ; 53 45 13

m t t year

F mt s m t s t year

m t
s s t year

m t




< ≤


= − + < ≤


− + > − +

 (33) 

The values of the unsteady parameters are considered as 

follows: 

( )1
1.01

−= yearm , ( )1
3.02

−= yearm
 
and ( )1

4.03
−= yearm

also the time 1t  and 2t  are taken ( )year1
 and ( )year5

, 

respectively and the value of 0.368391  =s , 0.7367812   =s

0.9173243  =s  and 125684661.959879504  =s , respectively. 

3.1. Case I: Uniform Type Input Point Source 

Figures 1-5 demonstrate the concentration patterns for a 

uniform input point source of heterogeneous porous media 

described by analytical solution (23, 24, 25).  

 
Figure 1. The contaminant concentration distribution profile obtained in 

(23) for various time 8.0,5.0,2.0)( =yeart  in the time domain 

*
0 tt ≤< . 

Figure 1. illustrates the dimensionless concentration 

distribution for different time 8.0,5.0,2.0)( =yeart  and 

for fix retardation factor 15.1=R  and dispersion coefficient

67.0)
12

(0 =−
yearkmD . It reveals the concentration 

distribution pattern produced by a uniform continuous point 

source in time domain *
0 tt ≤< . Concentration levels near 

to the source boundary are observed to be higher for higher 

time, lower for lower time, and stabilize after a distance away 

from the origin. 

 
Figure 2. Contaminant concentration profiles obtained in (24) for various 

time 85.0,81.0)( =yeart  in the time domain
**
ξttt ≤< . 

Figure 2. depicts the concentration distribution at different 

time 85.0,81.0)( =yeart in the time domain 
**
ξttt ≤< , 

assuming retardation factor and dispersion coefficients 

15.1=R , 67.0)
12

(
0

=−= yearkmD  respectively and other 

parameters are kept fixed. Groundwater velocity and 

dispersion coefficient vary rapidly with time, depending on 

unsteady parameters, as in the previous time domain. A 

sudden increase of amount 0.5 can be seen at both values of 

time at 0=x  and then it drops rapidly and reaches a steady 
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state as we move away from the source. Due to some natural 

phenomena described in the previous section, the sudden 

release of the solute concentration in this time domain causes 

the input source concentration level to spike rapidly at the 

source. On comparing pattern of both the value of time, it can 

be observed that sudden release concentration traversing into 

the medium with time and move in the direction of flow. 

 
Figure 3. Contaminant concentration profile obtained in (25) for various 

time 14.1,00.1,86.0)( =yeart  in the time domain 
*t tξ < . 

Figure 3. exhibits the pattern of solute concentration 

distribution at different time 14.1,00.1,86.0)( =yeart
 
in the 

time domain tt <ξ , assuming dispersion coefficient and 

retardation factor 2 1( ) 0 .6 70D k m y e a r − =  and 15.1=R , 

respectively and other significant parameters are maintained 

constant. A pulse of concentration can be observed at time 

86.0)( =yeart , nearly at position 2.0)( =kmx , then drops 

sharply with position and reaches a steady state. It is because, 

a sudden drop in the source concentration. The pulse 

dissolves with the time like 14.1,00.1)( =yeart  due to 

dispersion and convection phenomena. It can be observed 

that away from the source concentration is higher for higher 

time. 

 
Figure 4. Concentration distribution profile for various dispersion 

coefficient 
2 1 0.67,0.970D km year 

 
 

− = in time domain *0 t t< ≤ ,

* *t t tξ< ≤ , 
*t tξ < , obtained with (23, 24, 25), respectively. 

Figure 4. shows the effect of variation of different 

dispersion coefficient ( )2 1 0 .6 7 , 0 .9 70D k m y e a r − =  on 

concentration profile in different time domains 
*

0 tt ≤<
,

**
ξttt ≤<

,
 tt <*

ξ  keeping the other parameters constant. It 

can be observed that the concentration patterns in each 

domain are higher for higher dispersion coefficient. This is 

due to the fact that dispersion phenomenon causes the 

spreading of the plume in the medium. 

 
Figure 5. Concentration distribution profile for various retardation factors

1 .1 5 ,1 .4 5R =  in time domain *
0 tt ≤< , 

**
ξttt ≤< , tt <

*
ξ  

obtained with (23, 24, 25), respectively. 

Figure 5. shows the effect of various retardation factors

45.1,15.1=R  on the concentration distribution in different 

time domains 
*0 tt ≤<

, 
**
ξttt ≤<

,
 tt <*

ξ  for dispersion 

coefficient at
 

67.0)
12

(0 =−
yearkmD , keeping all other 

parameters fixed. It can be seen that at a particular position in 

each time domain, the concentration level decreases with an 

increment in retardation factor. 

3.2. Case II: Varying Type Input Point Source 

Figures 6, 7, 8, 9 and 10 display the solute concentration 

patterns for different input sources in the heterogeneous 

porous medium described by (30, 31, 32). 

 
Figure 6. Contaminant concentration profile obtained in (30) for various 

time ( ) 0.2, 0.5,0.8t year =  in the time domain *0 t t< ≤ . 
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Figure 6 describes the dimensionless concentration 

distribution at different time 8.0,5.0,2.0)( =yeart  in the 

time domain 
*

0 tt ≤< , assuming other parameters fixed. 

Unlike a uniform input source, it shows the concentration 

value at the origin (at the source), which is lower at lower time 

and higher at higher time. Contaminant concentrations 

continued to decline with position, but across the domain, their 

trends remain higher for higher time and lower for lower time. 

 
Figure 7. Contaminant concentration profile obtained in (31) for different 

times ( ) 0.81, 0.85t year =  in the time domain 
* *t t tξ< ≤ . 

Figure 7. shows the concentration profile at different times 

85.0,81.0)( =yeart  in the time domain 
**
ξttt ≤<  for 

retardation 15.1=R , 67.0)
12

(0 =−
yearkmD , keeping 

other parameters fixed. The concentration level is steadily 

decreasing with the position and stabilizing toward to the 

opposite end, but near the source of the domain, its 

depreciation is higher for higher time and lower for lower time. 

On comparing the uniform input source shown in Figure 2., in 

this time domain ( **
ξttt ≤< ) there is a moderate increment 

in the source concentration in present case in comparison to 

uniform input source case (Case 1). Near the source boundary, 

the concentration level remains high for a higher time and 

reaches a steady state beyond ).(3 kmx =
 

 
Figure 8. Contaminant concentration profile obtained in (32) for various 

time ( ) 0.86,1.00,1.14t year =  in the time domain 
*t tξ < . 

Figure 8. shows the concentration profile in the time 

domain tt <*
ξ  at different time 14.1,00.1,86.0)( =yeart It 

can be observed that the solute concentration patterns near 

the boundary are different at different times but the trends are 

almost the same after a distance from the origin which is 

inherently decreasing relative to position. Significant changes 

can be observed in the concentration pattern over time. The 

concentration levels at a particular position remain higher at 

higher time and lower at lower time. 

 
Figure 9. Contaminant concentration profile obtained in (30, 31, 32) for 

different dispersion values ( )2 1 0 .6 7 , 0 .9 70D km yea r − =  in time domain

*0 t t< ≤ , * *t t tξ< ≤ , 
*

t tξ < . 

Figure 9. shows the effect of different dispersion 

coefficient values ( )2 1 0 .6 7 , 0 .9 70D km y ea r − = on the 

concentration distribution in each time domain 
*

0 tt ≤<
,

**
ξttt ≤<

,
 *

t tξ < , assuming a retardation factor  1.15 = R  

and other parameter values fixed. It can be seen that for a 

higher dispersion coefficient in each time domain, the value 

of the concentration pattern remains lower near the inlet 

source, but order reverses on moving away from the source. 

This is due to the fact that the increased dispersion causes 

extra solute mixing in the domain. The concentration level 

attenuates at the other end by almost the same level. 

 
Figure 10. Contaminant concentration profile obtained in (30, 31, 32) for 

different retardation factors 1.15,1.45R =  in time domain *0 t t< ≤ ,

**
ξttt ≤< , tt <*

ξ  
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Figure 10 depicts the concentration distribution profile for 

different retardation factor 45.1,15.1=R  in different time 

domains (
*

0 tt ≤< ,
**
ξttt ≤<

,
 tt <*

ξ ) assuming 

dispersion coefficient 67.0)
12

(0 =−
yearkmD and keeping 

other effective fixed. It can be observed that the 

concentration level within the domains decreases with an 

increment in retardation factor in each time domain. It is 

observed that in all time domains close to the outflow 

boundary, the variation in the concentration distribution 

profile is quite significant the near inlet boundary. 

4. Conclusion 

Analytical solutions of the advection-dispersion equation 

(ADE) are obtained under the assumptions of scale- and 

time-dependent dispersion to assess groundwater 

contamination in heterogeneous semi-infinite porous 

structures. Solutions were developed for two types of input 

sources (uniform and varying nature). The model also takes 

into account the effects of heterogeneity parameters, first-

order decay and zero-order production. The proposed 

solution of ADE can effectively assess soil and groundwater 

contamination affected by the position and time-dependent 

parameters as well as space-dependent source boundary 

conditions. One can find the concentration of the pollutant at 

any time and place in the aquifer domain by using the 

solution obtained. The concentration level is high near the 

source boundary, but as the distance to the source increases, 

the concentration level trend continues to fall and attains the 

steady state. With important characteristics like dispersion 

and groundwater velocity, as well as medium heterogeneity, 

the influence of time seems to predominate. The solution is 

obtained with the help of the Laplace Integral Transform 

Technique. This problem offers a more realistic approach to 

variable dispersion and groundwater velocity because these 

values may be supposed to be different in different time 

intervals. These results highlight the importance of the 

dispersion function in the transport of solutes in a 

heterogeneous porous medium. The obtained results show 

that the pollutant transport is mainly influenced by the 

temporal input source. The developed mathematical model 

can be considered an effective tool to understand the 

transport behavior of pollutants in the surface and 

groundwater phenomena. 
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